13 research outputs found

    Study on the Algorithm for Real-time Interpolation of NURBS Curve

    Get PDF
    Abstract. In order to meet the needs of high speed and high precision computerized numerical control machining, a calculation based on the control of contour error and feeding acceleration for the real-time interpolation of Non-uniform rational B-spline (NURBS) curves was presented in this paper. On the premise of meeting the error requirement, machine can process parts with the highest feeding speed to achieve interpolation precision and interpolation speed optimization, and improve processing quality and efficiency

    Adaptive genetic algorithm based on fuzzy reasoning for the multilevel capacitated lot-sizing problem with energy consumption in synchronizer production

    Get PDF
    The multilevel capacitated lot-sizing problem (MLCLSP) is a vital theoretical problem of production planning in discrete manufacturing. An improved algorithm based on the genetic algorithm (GA) is proposed to solve the MLCLSP. Based on the solution results, the distribution of energy consumption in a synchronous production case is analyzed. In the related literature, the GA has become a much-discussed topic in solving these kinds of problems. Although the standard GA can make up for the defects of the traditional algorithm, it will lead to the problems of unstable solution results and easy local convergence. For these reasons, this research presents an adaptive genetic algorithm based on fuzzy theory (fuzzy-GA) to solve the MLCLSP. Firstly, the solving process of the MLCLSP with the fuzzy-GA is described in detail, where algorithms for key technologies such as the capacity constraint algorithm and the algorithm of solving fitness value are developed. Secondly, the auto-encoding of decision variables for MLCLSPs is studied; within this, the decision variables of whether to produce or not are encoded into a hierarchical structure based on the bill of material; combined with external demand, the decision variables of lot-sizing are constructed. Thirdly, the adaptive optimization process of parameters of the GA for the MLCLSP based on fuzzy theory is expounded, in which membership function, fuzzy rule, and defuzzification of the MLCLSP is mainly presented. Experimental studies using the processed dataset collected from a synchronizer manufacturer have demonstrated the merits of the proposed approach, in which the energy consumption distribution of the optimized production plan is given. The optimal lot-sizing is closer to the average value of the optimal value compared with the standard GA, which indicates that the proposed fuzzy-GA approach has better convergence and stability

    A new method of predicting the energy consumption of additive manufacturing considering the component working state

    Get PDF
    With the increase in environmental awareness, coupled with an emphasis on environmental policy, achieving sustainable manufacturing is increasingly important. Additive manufacturing (AM) is an attractive technology for achieving sustainable manufacturing. However, with the diversity of AM types and various working states of machines’ components, a general method to forecast the energy consumption of AM is lacking. This paper proposes a new model considering the power of each component, the time of each process and the working state of each component to predict the energy consumption. Fused deposition modeling, which is a typical AM process, was selected to demonstrate the effectiveness of the proposed model. It was found that the proposed model had a higher prediction accuracy compared to the specific energy model and the process-based energy consumption model. The proposed model could be easily integrated into the software to visualize the printing time and energy consumption of each process in each component, and, further, provide a reference for coordinating the optimization of parts’ quality and energy consumptio

    An Experimental Study on the Precision Abrasive Machining Process of Hard and Brittle Materials with Ultraviolet-Resin Bond Diamond Abrasive Tools

    No full text
    Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode

    Effects of heterogeneity and load amplitude on fatigue rate prediction of a welded joint

    No full text
    It is a contradiction to homogeneous material fatigue behavior characterized by widely used linear Paris law, welded-joint fatigue issues need to be reassessed because fatigue crack growth behavior going through heterogeneous region will be different. For a welded joint, log(da/dN) is no longer linearly related to log(ΔK) in heterogeneous region because of the change in fatigue properties resulting from the welding process. Theoretical model of the fatigue crack growth rate without artificial adjustable parameters was proposed by considering the effects of heterogeneity in a welded joint and load-amplitude variation on fatigue crack growth curve. In this fatigue heterogeneous region, the relationship between log(da/dN) and log(ΔK) is similar to a concave-down parabola. Predicted results from the proposed model agreed better with the experimental data obtained from fatigue tests conducted in this study and open published literatures for welded joints in comparison to the widely used Paris model

    A Weld Surface Defect Recognition Method Based on Improved MobileNetV2 Algorithm

    No full text
    Traditional welding quality inspection methods for pipelines and pressure vessels are time-consuming, labor-intensive, and suffer from false and missed inspection problems. With the development of smart manufacturing, there is a need for fast and accurate in-situ inspection of welding quality. Therefore, detection models with higher accuracy and lower computational complexity are required for technical support. Based on that, an in-situ weld surface defect recognition method is proposed in this paper based on an improved lightweight MobileNetV2 algorithm. It builds a defect classification model with MobileNetV2 as the backbone of the network, embeds a Convolutional Block Attention Module (CBAM) to refine the image feature information, and reduces the network width factor to cut down the number of model parameters and computational complexity. The experimental results show that the proposed weld surface defect recognition method has advantages in both recognition accuracy and computational efficiency. In summary, the method in this paper overcomes the limitations of traditional methods and achieves the goal of reducing labor intensity, saving time, and improving accuracy. It meets the actual needs of in-situ weld surface defect recognition for pipelines, pressure vessels, and other industrial complex products

    A Weld Surface Defect Recognition Method Based on Improved MobileNetV2 Algorithm

    No full text
    Traditional welding quality inspection methods for pipelines and pressure vessels are time-consuming, labor-intensive, and suffer from false and missed inspection problems. With the development of smart manufacturing, there is a need for fast and accurate in-situ inspection of welding quality. Therefore, detection models with higher accuracy and lower computational complexity are required for technical support. Based on that, an in-situ weld surface defect recognition method is proposed in this paper based on an improved lightweight MobileNetV2 algorithm. It builds a defect classification model with MobileNetV2 as the backbone of the network, embeds a Convolutional Block Attention Module (CBAM) to refine the image feature information, and reduces the network width factor to cut down the number of model parameters and computational complexity. The experimental results show that the proposed weld surface defect recognition method has advantages in both recognition accuracy and computational efficiency. In summary, the method in this paper overcomes the limitations of traditional methods and achieves the goal of reducing labor intensity, saving time, and improving accuracy. It meets the actual needs of in-situ weld surface defect recognition for pipelines, pressure vessels, and other industrial complex products

    A CNN-LSTM and Attention-Mechanism-Based Resistance Spot Welding Quality Online Detection Method for Automotive Bodies

    No full text
    Resistance spot welding poses potential challenges for automotive manufacturing enterprises with regard to ensuring the real-time and accurate quality detection of each welding spot. Nowadays, many machine learning and deep learning methods have been proposed to utilize monitored sensor data to solve these challenges. However, poor detection results or process interpretations are still unaddressed key issues. To bridge the gap, this paper takes the automotive bodies as objects, and proposes a resistance spot welding quality online detection method with dynamic current and resistance data based on a combined convolutional neural network (CNN), long short-term memory network (LSTM), and an attention mechanism. First, an overall online detection framework using an edge–cloud collaboration was proposed. Second, an online quality detection model was established. In it, the combined CNN and LSTM network were used to extract local detail features and temporal correlation features of the data. The attention mechanism was introduced to improve the interpretability of the model. Moreover, the imbalanced data problem was also solved with a multiclass imbalance algorithm and weighted cross-entropy loss function. Finally, an experimental verification and analysis were conducted. The results show that the quality detection accuracy was 98.5%. The proposed method has good detection performance and real-time detection abilities for the in-site welding processes of automobile bodies
    corecore